-
實驗室儀器
按功能分按專業實驗室分
- 化學合成
- 乳品類檢測專用儀器
- 細胞工程類
- 種子檢測專用儀器
- 病理設備
- 1. 乳品類檢測專用儀器
- 1. 種子檢測專用儀器
- 層析設備
- 動物實驗設備
- 糧油檢測
- 生物類基礎儀器
- 植物土壤檢測
- 1. 電泳(電源)儀、電泳槽
- 2. 分子雜交
- 3. 基因工程
- 4. PCR儀
- 5. 紫外儀、凝膠成像系統
- 藥物檢測分析
- 地質
- 紡織
- 分析儀器
- 農產品質量監測
- 1. 農藥殘毒快速檢測儀
- 2. 農產品檢測試紙
- 3. 農產品檢測試藥片
- 4. 土壤、化肥快速檢測儀
- 5. 種子外觀品質分析儀
- 水產品質量安全
- 水產技術推廣
- 水生動物防疫
- 食品檢測實驗室
- 疾病預防控制中心
- 1. 快速檢測試劑盒
- 2. 肉類檢測儀器
- 3. 食品安全快速分析儀
- 4. 食品安全檢測箱
- 5. 食品檢測儀器配套設備
- 6. 食品安全檢測儀器
- 7. 三十合一食品安全檢測儀
- 8. 相關配置、配件
- 供水、水文監測
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
熱銷品牌 - 工業儀器
- 戶外儀器
- 環境監測
- 便攜式儀器
- 在線式儀器
酶標儀中的熒光檢測技術
[2015/8/3]
1.概述:室溫下,大多數分子處于基態的最低振動能級,處于基態的分子吸收能量(光能、化學能、電能或熱能)后躍遷至激發態,激發態不穩定,將很快衰變到基態,以光的形式放出能量,這種現象稱為“發光現象”。分子發光包括熒光,磷光,化學發光,生物發光等。受到光照時發光,光照切斷時發光立即消失的叫熒光,光照切斷時,發光逐漸變弱以致消失的叫磷光,吸收化學反應的化學能量而發光叫化學發光,由生物能轉變為光輻射的稱作生物發光。
由于發光物質不同熒光有分子熒光和原子熒光之分,分子熒光為帶光譜,原子熒光為線光譜,通常所說的熒光為分子熒光。通過測定所發射熒光的特性和強度,可以對物質進行定性、定量分析。
2.熒光檢測技術
2.1熒光強度(FI):熒光強度與熒光物質的濃度成正比,這是熒光分析法是量分析的依據。在生物學上的應用非常廣泛,可以進行生物大分子定量,酶活性分析,熒光免疫分析,細胞學分析(細胞增殖,細胞毒理,細胞吸附等)和分子間相互作用。
2.1.1細胞凋亡檢測:Caspase家族在介導細胞凋亡的過程中起著非常重要的作用,其中Caspase-3為關鍵的執行分子,它在凋亡信號傳導的許多途徑中發揮功能。Caspase-3正常以酶原(32KD)的形式存在于胞漿中,在凋亡的早期階段,它被激活,活化的Caspase-3由兩個大亞基(17KD)和兩個小 亞基(12KD)組成,裂解相應的胞漿胞核底物,最終導致細胞凋亡。但在細胞凋亡的晚期和死亡細胞,caspase-3的活性明顯下降。
設計出熒光物質偶聯的短肽Z-DEVD-AMC。在共價偶聯時,AMC不能被激發熒光,短肽被水解后釋放出AMC,自由的AMC才能被激發發射熒光。根據釋放的AMC熒光強度的大小,可以測定 caspase-3的活性,從而反映Caspase-3被活化的程度。
2.1.2細胞毒性的檢測:體外細胞毒性研究對于檢測新的生物來源或人工合成的細胞毒素以及例行的臨床相關的檢測都有著重要的意義。細胞膜非滲透性的核染料 Propidium iodide能穿透損傷的細胞膜,熒光密度越高反映出其受損細胞越多。
2.1.3鈣流檢測:Fura-2、indo-1、Quin-2是Ca2+熒光指示劑,可以靈敏地反映細胞內鈣離子濃度的變化,當結合鈣離子時,最大激發波長會發生改變,發射熒光的強度和結合的Ca2+濃度有著定量的關系。
2.2熒光偏振(FP):1926年Perrin首先描述了熒光偏振理論,溶液中的熒光分子在受到偏振光照射時,可吸收并釋放出相應的偏振熒光,如果在激發時熒光物質處于靜止狀態,發射光將保持原有激發光的偏振性,如果其處于運動狀態,發射光電偏振偏振平面將不同于原有激發光的偏振特性,這就是熒光偏振現象,熒光分子與其它因子的相互作用,例如相互結合或排斥;其所處環境的性質,例如溶液的粘度、溫度等,這些因素都有可能對這個熒光因子受激發后發出的發射光的發射平面產生影響。因此以熒光偏振為基礎發展的技術可用來研究生命科學中分子之間的相互作用,如受體配體結合分析,DNA-蛋白質結合分析,SNP分析,酶活性分析。
熒光偏振分析所需的樣品量少,靈敏度高,可達亞納摩爾級范圍,重復性好,操作簡便,也更為安全可靠,不會在實驗過程中生成有害的放射性廢物,此外熒光偏振是真正均相的,允許實時檢測(動力學檢測),對于濃度變化不敏感,是均相檢測形式(中間不含洗滌步驟)的最佳解決方案。
2.3時間分辨熒光(TRF):在做熒光測定的時候,由于背景熒光信號干擾,使用傳統的發色團進而進行熒光檢測的靈敏度就會嚴重下降。大部分背景熒光信號是短時存在的,因此使用長衰減壽命的標記物就可以使瞬時熒光干擾減到最小化。
時間分辨熒光是用稀土元素作為標記物,稀土三價離子的電子云的結構會一定程度上限制了電子的遷移,導致這類元素發生的熒光的衰減周期通常是很長的,從而消除背景熒光的干擾 大大提高檢測的靈敏度(表2)。應用稀土元素作標記物的另一個好處是激發光與發射光峰值Stoke 位移大。這就可消除激發光和散射光的干擾,同時, 被激發的熒光光帶極窄, 熒光的發射峰非常尖銳, 可使儀器調整在極窄的波長范圍內測定, 極大地降低了來自背景的各種干擾。
熒光團 熒光壽命(ns)
非特異熒光背景 1~10
人血清白蛋白 4.1
球蛋白 3.0
細胞色素C 3.5
異硫氰酸熒光素(FITC)4.5
丹磺酰氯 14
稀土螯合物 103~106
2.4熒光共振能量傳遞(FRET):熒光共振能量傳遞現象是Perrin在20世紀初首先發現的,1948年,Foster創立了理論原理,指熒光能量供體與受體間通過偶極-偶極耦合作用轉移能量的過程,這種能量的轉移是非放射性的,產生FRET的條件主要有三個:(1)供體與受體間足夠靠近(1~10 nm);(2)供體的發射光譜與受體的激發光譜有一定的重疊;(3)給體與受體的偶極具一定的空間取向,這是偶極-偶極耦合作用的條件。
熒光共振能量傳遞因為要考慮到供體和受體之間的距離,所以經常用來研究分子間的相互作用,像蛋白質的相互作用,抗原抗體結合,受體與配體的結合,另外在膜反應、離子通道等方面的研究也有相應應用。將FRET熒光探針標記的肽鏈,加入到固體表面的雙層膜中,通過熒光漂白恢復(FRAP)成像技術檢測,為研究跨膜螺旋二聚作用提供一個新的方法。用FRET標記細胞質,應用時間分辨技術,檢測其對P2X離子通道的門控作用。
利用Eu等長效熒光物質作為供體,來進行熒光共振能量傳遞,在激發光熄滅后受體仍能較長的能量衰減時間,能量傳遞效率更高,可檢測的相互作用距離更長,可達到100-200nm,時間延遲檢測,降低了背景噪音,提高了靈敏度。